GLM-4.7-Flash-Trellis-3.8bpw

Trellis-quantized GLM-4.7-Flash — a 30B-A3B MoE model compressed to 3.78 bits per weight using sensitivity-aware mixed-precision quantization.

Metric Value
Effective bits 3.78 bpw
Compression 4.2× vs FP16
Model size ~14 GB (vs ~60 GB FP16)
Parameters 29.3B
Format HuggingFace sharded safetensors

Model Description

This is a quantized version of zai-org/GLM-4.7-Flash, the strongest model in the 30B class that balances performance and efficiency.

GLM-4.7-Flash features:

  • 30B-A3B MoE architecture (64 experts + shared expert, 2-4 active per token)
  • Multi-head Latent Attention (MLA) for 8× KV cache compression
  • State-of-the-art reasoning (91.6% on AIME 2025, 59.2% on SWE-bench Verified)
  • Bilingual (English + Chinese)

Quantization Details

Quantized using Trellis (EXL3-style) with Metal Marlin acceleration:

Bit Allocation

Bit Width Tensors Parameters % of Model
6-bit 3,037 9.4B 32.2%
3-bit 2,710 8.6B 29.3%
2-bit 2,736 8.6B 29.3%
4-bit 575 2.1B 7.2%
5-bit 196 591M 2.0%

Sensitivity-Aware Allocation

  • 8-bit: Router weights, embeddings, LM head, layer norms
  • 6-bit: Gate layers, attention projections with high outlier ratios
  • 4-5 bit: Standard attention layers (q/k/v/o projections)
  • 2-3 bit: MoE expert layers (lowest sensitivity)

Quantization Statistics

  • Average MSE: 0.000223
  • Average RMSE: 0.0149
  • Quantization time: ~110 seconds (RTX 3090 Ti)
  • Method: Trellis with Hadamard preprocessing, Viterbi nearest-neighbor, group-wise scales (g=128)

Files

GLM-4.7-Flash-Trellis-MM/
├── model-00001-of-00007.safetensors   # ~2 GB each
├── model-00002-of-00007.safetensors
├── model-00003-of-00007.safetensors
├── model-00004-of-00007.safetensors
├── model-00005-of-00007.safetensors
├── model-00006-of-00007.safetensors
├── model-00007-of-00007.safetensors
├── model.safetensors.index.json       # Weight map
├── base_weights.safetensors           # Embeddings, norms (FP16)
├── config.json                        # Model config
├── tokenizer.json                     # Tokenizer
├── tokenizer_config.json
└── quantization_index.json            # Quantization metadata

Usage

With Metal Marlin (Apple Silicon)

from metal_marlin.trellis import TrellisForCausalLM
from transformers import AutoTokenizer

model = TrellisForCausalLM.from_pretrained(
    "RESMP-DEV/GLM-4.7-Flash-Trellis-3.8bpw",
    device="mps"
)
tokenizer = AutoTokenizer.from_pretrained("zai-org/GLM-4.7-Flash")

prompt = "<|user|>\nExplain quantum computing in simple terms.\n<|assistant|>\n"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("mps")
output = model.generate(input_ids, max_new_tokens=256, temperature=0.7)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Tensor Format

Each quantized tensor has 4 components:

  • {name}__indices: Packed uint8 Trellis indices
  • {name}__scales: FP16 per-group scales (group_size=128)
  • {name}__su: FP16 row scaling factors
  • {name}__sv: FP16 column scaling factors

Hardware Requirements

Device VRAM Notes
Apple M2 Ultra 64 GB+ Via Metal Marlin
Apple M4 Max 36 GB+ Via Metal Marlin

Benchmarks

Original Model Performance (from Z.AI)

Benchmark GLM-4.7-Flash Qwen3-30B-A3B GPT-OSS-20B
AIME 2025 91.6 85.0 91.7
GPQA 75.2 73.4 71.5
SWE-bench Verified 59.2 22.0 34.0
τ²-Bench 79.5 49.0 47.7
BrowseComp 42.8 2.29 28.3

Quantized Model (Metal Marlin, M4 Max)

Metric Value
Decode 5.4 tok/s
Prefill (2K) 42 tok/s
Memory 16.9 GB

Limitations

  • Not compatible with standard transformers — requires Trellis-aware inference code
  • No speculative decoding yet
  • Quality loss: ~1-2% on benchmarks vs FP16 (typical for 3-4 bit quantization)

Credits

Citation

If you use this model, please cite the original GLM-4.5 paper:

@misc{glm2025glm45,
      title={GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models}, 
      author={GLM Team and Aohan Zeng and Xin Lv and others},
      year={2025},
      eprint={2508.06471},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.06471}, 
}

License

This quantized model inherits the MIT License from the original GLM-4.7-Flash model.

Downloads last month
7
Safetensors
Model size
14B params
Tensor type
F32
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RESMP-DEV/GLM-4.7-Flash-Trellis-MM

Finetuned
(33)
this model

Paper for RESMP-DEV/GLM-4.7-Flash-Trellis-MM