DisambertSingleSense-base

This model is a fine-tuned version of answerdotai/ModernBERT-base on the semcor dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9159
  • Precision: 0.6058
  • Recall: 0.6152
  • F1: 0.6105
  • Matthews: 0.6150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Matthews
No log 0 0 11.6611 0.0 0.0 0.0 -0.0000
2.5218 1.0 14014 4.1247 0.5003 0.5245 0.5121 0.5243
1.7184 2.0 28028 3.8822 0.5656 0.5727 0.5692 0.5726
1.2533 3.0 42042 3.9284 0.5859 0.5907 0.5883 0.5905
0.9708 4.0 56056 4.0396 0.5868 0.5907 0.5888 0.5905
0.7932 5.0 70070 4.1447 0.5899 0.5968 0.5934 0.5966
0.6030 6.0 84084 4.1830 0.5932 0.6017 0.5974 0.6014
0.5155 7.0 98098 4.2383 0.6065 0.6082 0.6074 0.6080
0.4701 8.0 112112 4.2015 0.6014 0.6122 0.6068 0.6120
0.4166 9.0 126126 4.2186 0.6096 0.6131 0.6113 0.6128
0.3191 10.0 140140 4.3041 0.6076 0.6096 0.6086 0.6093
0.2979 11.0 154154 4.3275 0.6082 0.6104 0.6093 0.6102
0.2633 12.0 168168 4.3902 0.6171 0.6209 0.6190 0.6207
0.2061 13.0 182182 4.4546 0.6141 0.6196 0.6168 0.6194
0.1829 14.0 196196 4.3960 0.6134 0.6161 0.6147 0.6159
0.1793 15.0 210210 4.4565 0.6151 0.6196 0.6174 0.6194
0.1473 16.0 224224 4.4976 0.6165 0.6218 0.6192 0.6216
0.1631 17.0 238238 4.4916 0.6113 0.6179 0.6146 0.6177
0.1679 18.0 252252 4.5221 0.6114 0.6161 0.6137 0.6159
0.1567 19.0 266266 4.5560 0.6057 0.6166 0.6111 0.6164
0.1670 20.0 280280 4.6266 0.6127 0.6179 0.6153 0.6177
0.1817 21.0 294294 4.5746 0.6117 0.6196 0.6157 0.6194
0.1752 22.0 308308 4.6536 0.6131 0.6192 0.6161 0.6190
0.2083 23.0 322322 4.7661 0.6108 0.6192 0.6150 0.6190
0.1764 24.0 336336 4.7735 0.6105 0.6170 0.6137 0.6168
0.2072 25.0 350350 4.8155 0.6076 0.6157 0.6116 0.6155
0.1668 26.0 364364 4.7572 0.6025 0.6109 0.6067 0.6107
0.2046 27.0 378378 4.8226 0.6028 0.6113 0.6070 0.6111
0.2653 28.0 392392 4.8000 0.6032 0.6166 0.6098 0.6163
0.3166 29.0 406406 4.8968 0.6062 0.6174 0.6118 0.6172
0.3265 30.0 420420 4.9159 0.6058 0.6152 0.6105 0.6150

Framework versions

  • Transformers 5.2.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.5.0
  • Tokenizers 0.22.2
Downloads last month
182
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for GliteTech/DisambertSingleSense-base

Finetuned
(1085)
this model