Spanning the Visual Analogy Space with a Weight Basis of LoRAs
Abstract
Visual analogy learning via dynamic composition of learned LoRA transformation primitives enables flexible image manipulation with improved generalization over fixed adaptation modules.
Visual analogy learning enables image manipulation through demonstration rather than textual description, allowing users to specify complex transformations difficult to articulate in words. Given a triplet {a, a', b}, the goal is to generate b' such that a : a' :: b : b'. Recent methods adapt text-to-image models to this task using a single Low-Rank Adaptation (LoRA) module, but they face a fundamental limitation: attempting to capture the diverse space of visual transformations within a fixed adaptation module constrains generalization capabilities. Inspired by recent work showing that LoRAs in constrained domains span meaningful, interpolatable semantic spaces, we propose LoRWeB, a novel approach that specializes the model for each analogy task at inference time through dynamic composition of learned transformation primitives, informally, choosing a point in a "space of LoRAs". We introduce two key components: (1) a learnable basis of LoRA modules, to span the space of different visual transformations, and (2) a lightweight encoder that dynamically selects and weighs these basis LoRAs based on the input analogy pair. Comprehensive evaluations demonstrate our approach achieves state-of-the-art performance and significantly improves generalization to unseen visual transformations. Our findings suggest that LoRA basis decompositions are a promising direction for flexible visual manipulation. Code and data are in https://research.nvidia.com/labs/par/lorweb
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper