Abstract
Large language models demonstrate superior performance in solving cryptic crossword clues and full crossword grids, achieving 93% accuracy on New York Times puzzles while providing logical explanations for answers.
Crosswords are a form of word puzzle that require a solver to demonstrate a high degree of proficiency in natural language understanding, wordplay, reasoning, and world knowledge, along with adherence to character and length constraints. In this paper we tackle the challenge of solving crosswords with large language models (LLMs). We demonstrate that the current generation of language models shows significant competence at deciphering cryptic crossword clues and outperforms previously reported state-of-the-art (SoTA) results by a factor of 2-3 in relevant benchmarks. We also develop a search algorithm that builds off this performance to tackle the problem of solving full crossword grids with out-of-the-box LLMs for the very first time, achieving an accuracy of 93% on New York Times crossword puzzles. Additionally, we demonstrate that LLMs generalize well and are capable of supporting answers with sound rationale.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper